Közismert tény, hogy a megfelelően kifőzött szilvalekvár lehűlés után igencsak “kemény” állagúvá válik, de a lekvárfőzés befejeztével, még melegen is meglehetősen nagy viszkozitású, alig folyik, így nehéz a befőttesüvegbe tölteni. Az egyik konzervgyár azzal a kéréssel keresett fel bennünket, hogy vizsgáljuk meg a szilvalekvár viszkozitásával kapcsolatos információkat, valamint végezzünk méréseket ezen tulajdonság meghatározására, mivel ez kritikus tényező a palackozási folyamatban. Az alábbiakban bemutatjuk a szilvalekvár viszkozitásának meghatározására végzett méréseink eredményeit. Részletezzük a méréshez szükséges eszközöket, eljárásokat és a témához illeszkedő összefüggéseket. Ennek a feladatnak a megoldása nemcsak az iparban, hanem az iskolai oktatásban is izgalmas projekt lehet. A téma iskolai oktatásban történő bevezetésének egy lehetséges módját is bemutatjuk.
Az általános- és a középiskolai oktatás egyre inkább elméleti jellegűvé vált az elmúlt időszakban, így sok diáknak nincsenek gyakorlati ismeretei, és csökken az ilyen irányú érdeklődésük. Ennek „eredményei” később a felsőoktatásban is tapasztalhatók. A tanári és a mérnök szakokra jelentkező diákok jelentős részének kevés ismerete, minimális izomérzése van a legtöbb hétköznapi jelenséggel, eszközzel és ezek működésével kapcsolatban, ezért számukra többek között a Mindennapi fizika és a Mérnöki fizika c. tantárgyakban igyekszünk pótolni ezeket a hiányosságokat. Jelen publikáció a 2024. októberi Fizikatanári Ankéton bemutatott "Hogyan működik?" c. eszközkiállítás eszközeinek egy részéről készült leírást tartalmazza. További részletek a cikkben (a címre kattintva megnyitható).
A pedagógus életpályamodell lehetőséget biztosít arra, hogy a doktori fokozattal rendelkező tanárok elérjék a minősítési rendszer legmagasabb kategóriáját. A kutatótanári kifejezés számomra nagy dilemmát okozott a kutatóprogramom elkészítésénél, mivel a PhD munkám során lehetőségem nyílt tényleges kutatócsoport tagjaként tevékenykednem és több éves tapasztalatot szereznem a kutatás területén, ezért kérdésként vetődött fel bennem, hogy mit és hogyan fogok kutatni középiskolai tanárként a szakóráim mellett?!
Debrecen városa óriási fejlődésen megy át az utóbbi években, rengeteg cég választja székhelyként városomat. Látva a városban lévő potenciált és a gimnáziumot fenntartó egyetem által nyújtotta lehetőségeket, célomként fogalmaztam meg, hogy minél több diákot indítsak el a mérnöki pályán, ezért egy olyan projektet álmodtam meg, melyben a diákok már középiskolás korukban kipróbálhatják a kutatómunkával járó feladatokat. Ezt a projektet Műszaki Innovációs Kutatóműhelynek neveztem el. További részletek a cikkben (a címre kattintva megnyitható).
A 65. Országos Fizikatanári Ankét és Eszközbemutató keretein belül tartottam műhelyfoglalkozást Mozaikok a fizikai optikából címmel. A témakörből olyan részeket válogattam, melyekhez érdekes fizikatörténeti vonatkozásokat, látványos kísérleteket ismerek, illetve olyan didaktikai tanácsaim vannak, melyeket szívesen megosztottam a fizikatanárokkal. Fontosnak tartom a tanulókísérleteket, ezért három ilyen ötlettel is készültem, melyekhez a szükséges anyagokat és az elkészítési, illetve végrehajtási útmutatót minden résztvevő a műhelyfoglalkozás elején megkapta. A foglalkozás során rendre a fényelhajlás, kettőstörés, fénypolarizáció, dikroizmus, optikai aktivitás és a lumineszcencia témákat érintettem. További részletek a cikkben (a címre kattintva megnyitható).
A következőkben ismertetett problémák sokaknak ismerősek lehetnek, megoldásuk sokunknál része lehet a fizikaszakkörök gyakorlatának. Az itt leírt megoldási módszerek azonban már nem biztos, hogy mindenki számára ismertek. Így a 2024-es ankét alkalmával megtartott műhelyfoglalkozás (és ez a cikk is) azt a célt szolgálja, hogy az érdeklődő kollégákat, esetleg egyetemi hallgatókat közelebb hozza az analógiákra épülő gondolkodáshoz, és a kezükbe adjon egy a munkájuk során jól használható feladatsort. További részletek a cikkben (a címre kattintva megnyitható).
A mesterséges intelligencia (MI) jelen van életünk minden területén, így a diákok hétköznapjaiban is. Érdemes megismernünk a MI legnépszerűbb alkalmazásait, hogy mi, tanárok is tudjuk, a diákok milyen feladatokat végeztethetnek el könnyedén a mesterséges intelligencia segítségével. Így nem tiltanunk kell az MI használatát – úgysem tudnánk – hanem inkább olyan feladatokat adni, melyben az MI-re alapozva, de a diák is dolgozik, tanul, analizál, fejlődik. Régebben rendszeresen adtam prezentáció-készítős szorgalmi feladatot. Most már azonban tudom, hogy például a Gamma nevű ingyenes programmal, nagyjából fél perc alatt lehet egy 8 diából álló diasort készíttetni bármilyen témakörben szöveggel, képekkel, szép, modern kivitelben. Így most már nem azt adom szorgalmi feladatnak, hogy készítsen a tanuló egy néhány diás prezentációt, hanem inkább generáltasson egyet a mesterséges intelligenciával, majd lektorálja, értékelje és szükség esetén javítsa azt. Szerintem a diáknak még több kompetenciája fejlődik a kritikai gondolkodása és a szakmai tudása mellett, mintha csak ő állította volna össze a diasort.
Ezek a hatások adták a kiindulópontot a mesterséges intelligenciával kapcsolatos előadás összeállítására, a különböző MI applikációk összegyűjtésére és rendszerezésére. A következőkben röviden összefoglalom a mesterséges intelligenciával kapcsolatos alapvető információkat, melyekről az Ankéton is beszéltem. További részletek a cikkben (a címre kattintva megnyitható).
A modern fizika egyik legizgalmasabb és legelgondolkodtatóbb jelensége a hullám-részecske kettősség, amelyet a híres Young-féle kétréses kísérlettel szemléltethetünk a legérzékletesebben. Habár ez a kísérlet bonyolultnak tűnhet, valójában egy egyszerű lézer és néhány háztartásban is fellelhető eszköz segítségével bárki bemutathatja. A célunk az, hogy a tanároknak magabiztosságot adjunk ennek a kísérletnek az elvégzéséhez, hiszen nem igényel drága felszerelést, mégis lenyűgöző élményt nyújt a tanítványoknak.
A kétréses kísérlet látványosan igazolja, hogy a fény egyszerre viselkedik hullámként és részecskeként, és épp ezért tökéletes eszköz arra, hogy diákjaink közelebb kerüljenek a kvantumfizika rejtelmeihez. Ezzel a kísérlettel közvetlenül megtapasztalhatják a hulláminterferencia jelenségét, és talán felébreszthetjük bennük a tudomány iránti kíváncsiságot.
A következő cikkben bemutatjuk, hogyan lehet ezt a kísérletet könnyen és költséghatékonyan elvégezni, valamint megosztunk néhány praktikus tanácsot és magyarázatot a tanítási folyamathoz. További részletek a cikkben (a címre kattintva megnyitható).
A természettudományok és a költészet első pillantásra egymástól távol eső világoknak tűnhetnek, ám valójában közös a gyökerük: mindkettő az univerzum megértésére és a létezés nagy kérdéseinek megválaszolására törekszik.
Új lehetőséget ad a fizikatanár számára, ha a költészet segítségével megnyitja diákjainak a fizika rejtett szépségeit, miközben közelebb hozza a tudományos megértés más formáit. Egy-egy versrészlet kapcsán a tanulók képesek lehetnek új megvilágításban szemlélni a téridő, a gravitáció, vagy akár az energia fogalmát – mintegy "kikönyökölve a csillagokra" egy Pilinszky-sor nyomán. Ezzel az írással arra szeretném ösztönözni a tanárokat, hogy a fizikai törvényszerűségeket ne csupán számok és képletek formájában mutassák meg, hanem a líra eszközeivel is felvértezve, merjenek érzékletesebb és mélyebb kapcsolatot teremteni tanítványaikkal az univerzum iránt. További részletek a cikkben (a címre kattintva megnyitható).
Az ókori egyiptomi piramisok az emberiség történetének lenyűgöző alkotásai közé tartoznak, és mindmáig rejtélyek övezik az építésüket. Hogyan lehetett több ezer évvel ezelőtt ekkora monumentális építményt létrehozni, a modern technológia hiányában? Mekkora erőfeszítést, mennyi embert és milyen logisztikai bravúrt igényelt a Kheopsz-piramis, az ókori világ hét csodájának egyetlen fennmaradt példánya?
Ez a cikk a tudományos megközelítés eszközeivel igyekszik választ találni ezekre a kérdésekre. Egy egyszerű kérdést teszünk fel: hány emberre lehetett szükség a Kheopsz-piramis építéséhez? A válaszhoz különféle fizikai és matematikai számításokat alkalmazunk, miközben figyelembe vesszük a történelmi és régészeti források által feltárt tényeket.
A téma nem csupán az egyiptomi civilizáció iránt érdeklődők számára lehet izgalmas, hanem azok számára is, akik a fizikai törvények gyakorlati alkalmazását szeretnék megérteni egy valós történelmi probléma kapcsán. A számítások során szisztematikusan végigvesszük a piramis anyagszükségletét, a kövek szállításának módját és a munkavégzéshez szükséges emberi erőt, mindezt közelítésekkel és feltételezésekkel kiegészítve.
Az alábbiakban bemutatott modellek célja, hogy a fiatalok számára is szemléletes példát nyújtsanak arra, miként használható a fizika a múlt megértéséhez. További részletek a cikkben (a címre kattintva megnyitható).
A síktükör képalkotásáról általában a következőket tanítjuk: A síktükörben látott kép mindig látszólagos, a tárggyal megegyező állású, a tárggyal egyenlő nagyságú. A képtávolság ugyanakkora, mint a tárgytávolság. A tanórákon az irányításváltással kapcsolatosan többnyire csak a tükörírást szokás megemlíteni, további elemzésre a tankönyvek általában nem vállalkoznak, sőt néhány könyv hibás állításokat fogalmaz meg ezzel kapcsolatban.
A műhelyfoglalkozáson először egyszerű, akár tanulókísérletként is elvégezhető kísérletekkel megvizsgáltuk, hogy mit jelent az irányításváltás, és ennek milyen gyakorlati vonatkozásai vannak. Ezután a kép nagyságával kapcsolatban tisztáztunk egy gyakori félreértést, továbbá megoldottunk egy ehhez kapcsolódó feladatot. Végül olyan esetekkel is foglalkoztunk, amelyeknél a kép több tükrön történő visszaverődés után jön létre. A műhelyhez készült internetes anyagok itt érhetők el. További részletek a cikkben (a címre kattintva megnyitható).